Acute promyelocytic leukemia (APL) is driven by the t(15;17) translocation yielding the PML/RARα oncogenic fusion protein (1). Similar to many other oncogenic proteins, PML/RARα recruits corepressors to reprogram expression of yet unidentified master regulators involved in leukemic cell self-renewal, differentiation, senescence, or apoptosis. All-trans retinoic acid (ATRA) binding onto the RARα moiety of PML/RARα yields transcriptional reactivation of these downstream targets, which foster APL differentiation to drive clinical response. It was later shown that ATRA, as well as arsenic trioxide (ATO), initiates PML/RARα degradation by arsenic trioxide (ATO) and may circumvent ATO-resistant mutants, implying a distinct molecular mechanism. Oncogenic fusion proteins are expected to be RARα–resistant mutants, implying a distinct molecular mechanism. Why is PML/RARα sensitive to hyperthermia? Because this was not observed with RARα alone, could it reflect the ability of PML to aggregate upon oxidative stress (6)? PML/RARα may be located in the nucleus or in the cytoplasm and may be degraded by the proteasome or lysosomes (8). Although some autophagic regulators have been shown in the nucleus, most of the autophagic process occurs at cytoplasm, where SIAH2 is primarily located (9). Thus, heat shock may promote export or block import of PML/RARα–corepressor complexes. More generally, this study suggests that hyperthermia may precipitate aggregation, and subsequent degradation, of other large corepressor-associated fusion proteins. The oncogenic AML1/ETO and TEL/AML1 fusions are corepressor-associated master transcriptional repressors that may be located in the nucleus or in the cytoplasm and may be degraded by the proteasome or lysosomes. These studies raise a number of intriguing biological and biochemical issues. Why is PML/RARα so sensitive to hyperthermia? Because this was not observed with RARα alone, could it reflect the ability of PML to aggregate upon oxidative stress (6)?
Hyperthermia can induce fusion oncoprotein degradation. A, In APL, targeted PML/RAR\(\alpha\) degradation occurs after ATRA/ATO treatment. In rare cases, resistant mutants can emerge that impede PML/RAR\(\alpha\) degradation. Hyperthermia first yields matrix association of the PML/RAR\(\alpha\)-corepressor complex. Then, the corepressor-bound SIAH2 E3 ligase polyubiquitinates PML/RAR\(\alpha\)-containing aggregates, leading to the degradation of the oncogenic fusion protein. Hyperthermia destabilizes wild-type or ATO-resistant PML/RAR\(\alpha\) and may synergize with ATO to drive APL response. B, Tentative generalization to other corepressor-associated oncogenic fusion proteins.

Authors' Disclosures
No disclosures were reported.
Published first May 11, 2021.

REFERENCES
PML/RARα Destabilization by Hyperthermia: A New Model for Oncogenic Fusion Protein Degradation?

Hsin Chieh Wu, Domitille Rérolle and Hugues de Thé

Blood Cancer Discov 2021;2:300-301. Published OnlineFirst May 11, 2021.

Updated version Access the most recent version of this article at:
doi: 10.1158/2643-3230.BCD-21-0071

Cited articles This article cites 10 articles, 4 of which you can access for free at:
http://bloodcancerdiscov.aacrjournals.org/content/2/4/300.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://bloodcancerdiscov.aacrjournals.org/content/2/4/300.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.