COVID-19 Infections and Clinical Outcomes in Patients with Multiple Myeloma in New York City: A Cohort Study from Five Academic Centers

Malin Hultcrantz1, Joshua Richter2, Cara A. Rosenbaum3, Dhwani Patel1, Eric L. Smith1, Neha Korde4, Sydney X. Lu1, Sham Mailankody1, Urvi A. Shah1, Alexander M. Lesokhin1, Hani Hassoun1, Carlyn Tan1, Francesco Maura1, Andriy Derkach4, Benjamin Diamond1, Roger N. Pearse3, Deepu Madduri2, Ajai Chari2, David Kaminetzky5, Marc J. Braunstein5, Christian Gordillo6, Ran Reshef1, Ying Taur7,8, Faith E. Davies5, Sundar Jagannath2, Ruben Niesvizky3, Suzanne Lentzsch6, Gareth J. Morgan5, and Ola Landgren1

ABSTRACT

Patients with multiple myeloma have a compromised immune system, due to both the disease and antimyeloma therapies, and may therefore be particularly susceptible to COVID-19. Here, we report outcomes and risk factors for serious disease in patients with multiple myeloma treated at five large academic centers in New York City in the spring of 2020, during which it was a global epicenter of the SARS-CoV-2 pandemic. Of 100 patients with multiple myeloma (male 58%; median age 68) diagnosed with COVID-19, 75 were admitted; of these, 13 patients (17%) were placed on invasive mechanical ventilation, and 22 patients (29%) expired. Of the 25 nonadmitted patients, 4 were asymptomatic. There was a higher risk of adverse outcome (intensive care unit admission, mechanical ventilation, or death) in Hispanics/Latinos (n = 21), OR = 4.7 (95% confidence interval, 1.3–16.7), and African American Blacks (n = 33), OR = 3.5 (1.1–11.5), as compared with White patients (n = 36). Patients who met the adverse combined endpoint had overall higher levels of inflammatory markers and cytokine activation. None of the other studied risk factors were significantly associated (P > 0.05) with adverse outcome: hypertension (n = 56), OR = 2.2 (0.9–5.4); diabetes (n = 18), OR = 0.9 (0.3–2.9); age >65 years (n = 63), OR = 1.8 (0.7–4.6); high-dose melphalan with autologous stem cell transplant <12 months (n = 7), OR = 0.9 (0.2–5.4); and immunoglobulin G <650 mg/dL (n = 42), OR = 0.9 (0.3–2.2). In this largest cohort to date of patients with multiple myeloma and COVID-19, we found the case fatality rate to be 29% among hospitalized patients and that race/ethnicity was the most significant risk factor for adverse outcome.

SIGNIFICANCE: Patients with multiple myeloma are immunocompromised, raising the question whether they are at higher risk of severe COVID-19 disease. In this large case series on COVID-19 in patients with multiple myeloma, we report 29% mortality rates among hospitalized patients and identify race/ethnicity as the most significant risk factor for severe outcome.

See related commentary by Munshi and Anderson, p. 218.

Note: S. Jagannath, R. Niesvizky, S. Lentzsch, G.J. Morgan, and O. Landgren contributed equally to this article.

Corresponding Authors: Malin Hultcrantz, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, Phone 646-608-3714; E-mail: hultram@mskcc.org; and Ola Landgren, landgrec@mskcc.org

Blood Cancer Discov 2020;1:234–43
doi: 10.1158/2643-3230.BCD-20-0102
©2020 American Association for Cancer Research.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has become a global health crisis since it was first reported in Wuhan, China, in December 2019 (1, 2). COVID-19 has so far caused over 600,000 deaths globally and has spread to the majority of countries around the world (https://coronavirus.jhu.edu/map.html). New York City was one of the global epicenters for the SARS-CoV-2 outbreak in the spring of 2020, and a significant number of individuals have been infected by the virus, including both patients with underlying health conditions as well as healthy individuals (3). Clinical symptoms of COVID-19 include fever, cough, fatigue, diarrhea, headaches, and shortness of breath (1). They range from mild symptoms to severe disease characterized by pneumonia, hypoxia, respiratory failure, acute respiratory disease syndrome (ARDS), immune dysregulation, cytokine storm, thromboembolic events, and multiorgan failure (1). Reported risk factors for severe COVID-19 disease are male gender, advanced age, smoking, and certain comorbidities such as hypertension (1, 4).

Several studies of varying size have suggested that patients with cancer on active therapy or recent surgery have a higher risk of a more severe COVID-19 disease course (2, 5–14). Patients with metastatic disease or hematologic cancers have been among those with the poorest outcomes (10). In addition, recent immunotherapy treatment with checkpoint inhibitors was associated with a poorer outcome (7). Patients with multiple myeloma have an inherently compromised humoral and cellular immunity from the malignant plasma cell disorder itself and its associated hypogammaglobulinemia (15). The immunosuppression seen at presentation can be exacerbated by the standard combination antimyeloma therapies currently in use (16). Among the conventional treatment options for multiple myeloma, the use of high-dose melphalan chemotherapy followed by autologous stem cell transplant is particularly associated with acute and sustained hypogammaglobulinemia and T-cell suppression (17). Here, we report on the largest experience to date from a cohort of patients with multiple myeloma with COVID-19 from five large academic centers in New York City during the height of the COVID-19 outbreak.

RESULTS

We identified a total of 100 patients with multiple myeloma and COVID-19. Median age at the time of COVID-19
infection was 68 years (range, 41–91 years). Fifty-eight (58%) of the patients were male, and 24 were current or former smokers (Table 1). Concomitant cardiovascular or pulmonary comorbidities were seen in 74 patients, of which hypertension was the most common (56%). In addition, we identified 27 patients with related plasma cell disorders; 20 with monoclonal gammopathy of undetermined significance (MGUS), 3 with smoldering multiple myeloma (SMM), 3 patients with amyloid light-chain (AL) amyloidosis, and 1 patient with solitary plasmacytoma (Table 1).

Of the 100 patients with multiple myeloma, 28 patients (28%) had newly diagnosed multiple myeloma; 26 were being treated with induction therapy, 1 had not yet started induction, and 1 had opted not to start therapy. There were 35 (35%) patients with stable disease (i.e., nonactive disease); 23 of these were on lenalidomide maintenance, 5 were on other forms of maintenance including ixazomib/dexamethasone and daratumumab/dexamethasone, and 7 patients with stable disease were monitored off therapy. Thirty-five (35%) patients had relapsed/refractory multiple myeloma, of which 31 were on various anti–multiple myeloma treatments—the majority daratumumab- or carfilzomib-based treatments. The remaining 4 relapsed/refractory patients were not on active anti-myeloma therapy due to advance disease stage (hospice) or other more pressing comorbidities. Information on treatment status was missing for 2 patients, who had both been classified as newly diagnosed multiple myeloma (Table 2). Overall, a total of 39 patients had undergone high-dose melphalan followed by autologous stem cell transplant—7 patients within the 12 months prior to contracting COVID-19. Six patients and 1 patient had undergone high-dose melphalan followed by autologous stem cell transplant in 6 months and 3 months, respectively, prior to contracting COVID-19. Two patients had a prior allogeneic stem cell transplant several years before the COVID-19 diagnosis (Table 2). Forty-two patients (42%) had hypogammaglobulinemia [immunoglobulin G (IgG) <650 mg/dL], and 18 patients (18%) had severe hypogammaglobulinemia (IgG <400 mg/dL).

The laboratory findings in this multiple myeloma cohort revealed lymphopenia and elevated C-reactive protein, ferritin, D-dimer, and interleukin 6 (IL-6) levels (Table 3). Patients who met the adverse combined endpoint [i.e., intensive care unit (ICU) admission, invasive mechanical ventilation, or death] had overall higher levels of inflammatory markers, reflecting a more severe infection and cytokine activation (Table 3).

Of the 100 patients with multiple myeloma and a SARS-CoV-2 positive RNA PCR test on this study, 75 (75%) were admitted due to COVID-19; 17 were admitted to the ICU, and 13 of these patients were placed on invasive mechanical ventilation. Twenty-two of the multiple myeloma patients, thus 29% of those admitted, expired during the follow-up time; all reported deaths were from COVID-19.

Regarding treatments used for COVID-19, 52 patients were treated with hydroxychloroquine and 52 with azithromycin; 42 had the combination of the two, and 35 received neither hydroxychloroquine nor azithromycin (Table 4). Twenty-seven patients were treated with steroids, mainly dexamethasone or methylprednisone, for COVID-19. Nine patients received treatment with IL-6 inhibitors, tocilizumab or sarilumab, and 1 patient was treated with the IL-1 inhibitor anakinra and the TNF-alpha inhibitor infliximab. Other treatments included broad-spectrum antibiotics and investigational antiviral therapies such as lopinavir–ritonavir (n = 4) and remdesivir (n = 3). Two patients were treated with convalescent plasma.

Nine patients developed COVID-19-related thromboembolic events: 7 venous thromboembolic events and 2 cerebrovascular events. Six of these patients were on active multiple myeloma therapy prior to the COVID-19 diagnosis—4 on treatment including lenalidomide. The majority of admitted

Table 1. Patients’ characteristics

| Number (%) |
All patients	127 (100)
Men	68 (54)
Women	59 (46)
Median age at COVID-19 (years)	68 years
Former/current smoker	34 (27)
Never smoker	92 (73)
Multiple myeloma	100 (79)
Newly diagnosed multiple myeloma	30
Stable multiple myeloma without relapse	35
Relapsed/refractory multiple myeloma	35
MGUS	20 (16)
Smoldering multiple myeloma	3 (2.4)
AL amyloidosis	3 (2.4)
Solitary plasmacytoma	1 (0.8)

Note: Three multiple myeloma patients had concomitant AL amyloidosis. Abbreviations: AL, amyloid light-chain; MGUS, monoclonal gammopathy of undetermined significance.

Table 2. Treatment regimens in patients with multiple myeloma at the time of COVID-19 diagnosis

| Number |
All patients	100
Patients with ongoing treatment	86
Bortezomib-including regimen	20
Carfilzomib-including regimen	15
Daratumumab-including regimen	24
Ixazomib-including regimen	6
Lenalidomide maintenance	22
Other treatments*	10
Prior MEL/ASCT	39
Prior allogeneic transplant	2
Not on treatment	12

Missing information regarding treatment status | 2 |

*Other treatments included DCEP (dexamethasone, cyclophosphamide, etoposide, cisplatin), low-dose melphalan, panabinosat, iberomid, chlorithromycin, venetoclax, selinexor, and AMG-701.

Abbreviation: MEL/ASCT, melphalan/autologous stem cell transplant.
patients (n = 47) were on thromboprophylaxis with heparin or low molecular–weight heparin prophylaxis, unless there was a contraindication or prophylaxis was not indicated (young, mobile patient with mild disease). Nine patients were on direct anticoagulatior medication; the majority continued while inpatient in lieu of heparin or low molecular–weight heparin prophylaxis. Two patients did not receive thromboprophylaxis and information on prophylaxis was missing for 1 patient who developed thrombosis. Fifteen of the patients with multiple myeloma continued on low-dose aspirin prophylaxis, and the majority of these were outpatients.

Twenty-nine patients (29%) of the 100 patients with multiple myeloma met the combined adverse endpoint (ICU admission, mechanical ventilation, or death). The risk of severe outcome (ICU admission, mechanical ventilation, or death) was significantly elevated for those with hypertension (n = 56), OR = 2.2 (0.9–5.4); diabetes (n = 18), OR = 0.9 (0.3–2.9), age >65 years (n = 63), OR = 1.8 (0.7–4.6); or male gender (n = 58), OR = 0.9 (0.4–2.0). We did not observe any statistical association between the adverse combined endpoint and hypogammaglobulinemia (IgG <750 mg/dL; n = 42), OR = 0.9 (0.3–2.2), or severe hypogammaglobulinemia (IgG <400 mg/dL; n = 18) OR = 1.0 (0.3–3.2), respectively (Fig. 1).

In the entire case series of 127 patients with plasma cell disorders, the OR of severe outcome (ICU admission, mechanical ventilation, or death) was significantly elevated for those with hypertension (n = 72; OR = 2.9; 1.3–6.4), whereas diabetes, male gender, age >65 years, or chronic obstructive pulmonary disease/asthma were not significantly associated with the adverse combined endpoint.

DISCUSSION

COVID-19 is a disease caused by the SARS-CoV-2 virus where, in the general population, the most severe outcomes are observed among elderly patients and patients with cardiovascular comorbidities (3, 18). Limited data are available on outcomes in patients with cancers, particularly patients with hematologic malignancies. Here, we present a large case series of COVID-19 in patients with multiple myeloma, a plasma cell malignancy associated with a compromised immune system, due to both disease biology and anti-myeloma therapies (15). Consecutive patients with multiple myeloma and related precursor diseases with confirmed presence of SARS-CoV-2 between March 1, and April 30, 2020, from five large academic centers in New York City were included in this study. In the

Table 3. Laboratory findings in patients with multiple myeloma and COVID-19

<table>
<thead>
<tr>
<th></th>
<th>All patients n = 100</th>
<th>With combined adverse outcome n = 29</th>
<th>Without combined adverse outcome n = 71</th>
<th>Reference range</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC</td>
<td>3.2 (0.4–17.5)</td>
<td>4.0 (0.4–17.2)</td>
<td>2.5 (0.4–17.5)</td>
<td>1.5–7.5 (×10^9/L)</td>
<td>0.025</td>
</tr>
<tr>
<td>ALC</td>
<td>0.6 (0.1–1.8)</td>
<td>0.6 (0.1–1.2)</td>
<td>0.7 (0.1–1.8)</td>
<td>0.9–3.2 (×10^9/L)</td>
<td>0.21</td>
</tr>
<tr>
<td>Platelets</td>
<td>152 (6–507)</td>
<td>119 (6–350)</td>
<td>164.5 (19–507)</td>
<td>160–400 (×10^9/L)</td>
<td>0.037</td>
</tr>
<tr>
<td>CRP</td>
<td>34 (2.7–293)</td>
<td>37 (5.5–293)</td>
<td>25.5 (2.7–259)</td>
<td><0.50 (mg/dL)</td>
<td>0.25</td>
</tr>
<tr>
<td>Ferritin</td>
<td>658 (2–40,000)</td>
<td>2,015 (42–40,000)</td>
<td>476 (2–7,174)</td>
<td>22–415 (mg/L)</td>
<td>0.001</td>
</tr>
<tr>
<td>D-dimer</td>
<td>1.3 (0.2–83)</td>
<td>3.0 (0.3–83)</td>
<td>0.9 (0.2–5.5)</td>
<td><0.5 (mcg/mL FEU)</td>
<td>0.001</td>
</tr>
<tr>
<td>IL-6</td>
<td>71 (6–3,238)</td>
<td>102 (7.3–3,238)</td>
<td>64.5 (6.0–532)</td>
<td><5.0 (pg/dL)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Note: Adverse combined endpoint = ICU admission, mechanical ventilation, or death. Wilcoxon rank test was used to compare laboratory values for patients who had the combined adverse outcome versus patients without the adverse outcome.

Abbreviations: ANC, absolute neutrophil count; ALC, absolute lymphocyte count; IL-6, interleukin 6.
general population, the probability of dying from COVID-19 has been reported to be between 1% and 6% including all COVID-19–positive cases, and between 6% and 26% for patients hospitalized due to the virus (1, 3, 18–20). Here, we show that among 75 patients with multiple myeloma admitted due to COVID-19, the mortality rate was 29%, which is thought to be on the high end of what has been reported in the general population.

Recent publications on COVID-19 in patients with cancer have reported case fatality rates between 11% and 28% and for hematologic malignancies up to 37% (2, 7, 10). Robilotti and colleagues reported on 423 patients with cancer with COVID-19 diagnosed at Memorial Sloan Kettering Cancer Center (MSKCC); of these, 40% were admitted, and 12% expired within the first 30 days after diagnosis (7). Symptomatic COVID-19 in patients with multiple myeloma has been indicated to have a high mortality—as high as 55% in patients undergoing systemic anticancer therapy for multiple myeloma (9). In larger studies from hospitalized COVID-19 patients in the United Kingdom (N = 20,133) and in one of the hospital systems in the New York area (N = 5,700), the case fatality rate has been between 21% and 26% for hospitalized patients (3, 18). According to the Johns Hopkins Coronavirus Resource Center, on April 30, New York state had 299,000 cases and 18,100 deaths, indicating an approximate case fatality rate of 6% (https://coronavirus.jhu.edu/map.html, accessed on July 14, 2020). The variation between studies may be caused by study design (inpatient vs. all patients), access to testing, and whether screened patients, likely capturing more asymptomatic patients, were included. Our findings on COVID-19–related mortality, 22% in the whole cohort of patients with myeloma and 29% of those admitted, are in line with recent reports on a high mortality in patients with hematologic malignancies in relation to the general population (Table 5; refs. 2, 10).

We were motivated to better understand risk factors associated with severe outcomes from COVID-19–positive patients with multiple myeloma. Specifically, we studied host characteristics as well as available variables related to the disease and treatment. We found that racial and ethnical background was significantly associated with increased risk of severe outcome, where the highest risks were seen in Hispanics/Latinos and in African American Blacks (21, 22). Underlying reasons for this may be differences in preexisting comorbidities and socioeconomic factors, including the possibility to work from home and to practice social distancing (21, 22). It is possible that disparities in level of care (i.e., health insurance coverage) may have affected the outcome; however, we were unable to address these aspects further within the scope of this study. Similar to reports from the general population, there was a tendency toward a higher OR for adverse outcome (ICU admission, invasive mechanical ventilation, or death) in patients with preexisting hypertension (3).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Ref: <65 years)</td>
<td>1.8 (0.7–4.7)</td>
<td>0.26</td>
</tr>
<tr>
<td>>65 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (Ref: Female)</td>
<td>0.9 (0.4–2.0)</td>
<td>0.82</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race/ethnicity (Ref: White)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American Black</td>
<td>3.5 (1.1–11.5)</td>
<td>0.05</td>
</tr>
<tr>
<td>Asian/other</td>
<td>2.1 (0.2–24.0)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>4.7 (1.3–16.7)</td>
<td></td>
</tr>
<tr>
<td>Multiple myeloma disease stage (Ref: Stable)</td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>Newly diagnosed</td>
<td>1.2 (0.4–3.7)</td>
<td></td>
</tr>
<tr>
<td>Relapsed/refractory</td>
<td>1.3 (0.5–3.8)</td>
<td></td>
</tr>
<tr>
<td>MEL/ASCT (Ref: >12 months)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td><12 months</td>
<td>0.9 (0.2–5.3)</td>
<td></td>
</tr>
<tr>
<td>Any cardiac commodities (Ref: No)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hypertension (Ref: No)</td>
<td>1.2 (0.4–3.1)</td>
<td>0.12</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (Ref: No)</td>
<td>2.2 (0.9–5.4)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGG (Ref: >650 mg/dL)</td>
<td>0.9 (0.3–2.9)</td>
<td>0.81</td>
</tr>
<tr>
<td><650 mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGG (Ref: >400 mg/dL)</td>
<td>0.9 (0.3–2.2)</td>
<td></td>
</tr>
<tr>
<td><400 mg/dL</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MEL/ASCT (Ref: >12 months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newly diagnosed</td>
<td>1.0 (0.3–3.2)</td>
<td></td>
</tr>
<tr>
<td>Relapsed/refractory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. ORs of the combined adverse endpoint (ICU admission, invasive mechanical ventilation, or death). Fisher exact test was used to estimate ORs for the combined adverse endpoint in relation to clinical characteristics. CI, confidence interval; IGG, IgG level.
COVID-19 in Patients with Multiple Myeloma

We note the concerns of the American Society of Hematology, the European Myeloma Network, and the International Myeloma Society, whose recommendations state that for transplant-eligible patients, high-dose melphalan chemotherapy followed with autologous stem cell transplant should be postponed, if possible, until the pandemic abates (ref. 31; American Society of Hematology; COVID-19 and Multiple Myeloma; 2020 at https://www.hematology.org/covid-19/covid-19-and-multiple-myeloma; May 8, 2020; International Myeloma Society Recommendations for the Management of Myeloma Patients During the COVID-19 Pandemic. 2020; https://cms.cws.net/content/beta.myelomasociety.org/files/IMS%20recommendations%20for%20Physicians%20Final.pdf; accessed May 8, 2020). Given that it is unknown whether there could be additional SARS-CoV-2 outbreaks as the lockdown eases or seasonal outbreaks in following years, it is good clinical practice to have this discussion with every patient. When a safe and efficacious SARS-CoV-2 vaccine becomes available, it should be recommended to patients with multiple myeloma and should be added to reimmunization programs for melphalan-induced inactivation of prior vaccines.

<table>
<thead>
<tr>
<th>Patient cohort</th>
<th>Number of patients</th>
<th>Setting</th>
<th>Case fatality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current study Multiple myeloma</td>
<td>100</td>
<td>Inpatient and outpatient</td>
<td>22%</td>
</tr>
<tr>
<td>Lee et al. (11) All cancer patients</td>
<td>800</td>
<td>Inpatient and outpatient</td>
<td>28%</td>
</tr>
<tr>
<td>Robilotti et al. (7) All cancer patients</td>
<td>423</td>
<td>Inpatient and outpatient</td>
<td>12%</td>
</tr>
<tr>
<td>Miyashita et al. (13) All cancer patients</td>
<td>334</td>
<td>Inpatient and outpatient</td>
<td>11%</td>
</tr>
<tr>
<td>Mehta et al. (10) All cancer patients</td>
<td>218</td>
<td>Inpatient and outpatient</td>
<td>28%</td>
</tr>
<tr>
<td>Mehta et al. (10) Hematologic malignancy subcohort</td>
<td>54</td>
<td>Inpatient and outpatient</td>
<td>37%</td>
</tr>
<tr>
<td>Dai et al. (2) All cancer patients</td>
<td>105</td>
<td>Inpatient and outpatient</td>
<td>11%</td>
</tr>
<tr>
<td>Cook et al. (9) Multiple myeloma</td>
<td>75</td>
<td>Inpatient and outpatient</td>
<td>54.7%</td>
</tr>
<tr>
<td>Malard et al. (12) Hematologic malignancy</td>
<td>25</td>
<td>Inpatient</td>
<td>36%</td>
</tr>
<tr>
<td>Docherty et al. (18) All patients</td>
<td>20,133</td>
<td>Inpatient</td>
<td>26%</td>
</tr>
<tr>
<td>Richardson et al. (3) All patients</td>
<td>5,700</td>
<td>Inpatient</td>
<td>21%</td>
</tr>
<tr>
<td>Goyal et al. (19) All patients</td>
<td>393</td>
<td>Inpatient</td>
<td>10%</td>
</tr>
<tr>
<td>Deng et al. (20) All patients</td>
<td>82,719</td>
<td>All</td>
<td>1%-8%</td>
</tr>
<tr>
<td>Guan et al. (1) All patients</td>
<td>1,099</td>
<td>All</td>
<td>1.4%</td>
</tr>
<tr>
<td>Johns Hopkins University CSSE COVID-19 map*</td>
<td>−299,000</td>
<td>All</td>
<td>6%</td>
</tr>
</tbody>
</table>

*Center for Systems Science and Engineering (CSSE) at Johns Hopkins University COVID-19 map for cumulative number of cases and deaths on April 30, 2020 (https://coronavirus.jhu.edu/map.html).
which patients who were treated at local hospitals in the outpa-
ter".

addition, there are indications that the Bruton tyrosine kinase
cessful treatment of COVID-19 with IL-6 blockade (44–49). In
several of the initial publications have now been retracted
over cardiac arrhythmias and other potentially serious effects
reduce mortality in hospitalized patients with COVID-19 (42).

A few patients in our series were treated with lopinavir-ritona-
cess to be carefully considered and adjusted to reduce the risk of
are covered by the five included hospital centers.

In prior reports from the general population, the immune response in patients with severe COVID-19 shows a unique pattern with high IL-6, low HLA-DR expression, and dysregu-
levels. Furthermore, COVID-19 can lead to a hypercoagulable
and, subsequently, B-cell lymphopenia (36). In the current
levels of IL-6, elevated ferritin, and low absolute lymphocyte
levels. Furthermore, COVID-19 can lead to a hypercoagulable
with multiple myeloma, we found high
levels. Furthermore, COVID-19 can lead to a hypercoagulable
series of patients with multiple myeloma, we found high
series, 9 patients had thromboembolic events, and D-dimer
levels were significantly elevated in patients with severe out-
comes. The biological underpinnings of these observations
remain to be further explained in functional studies.

Few treatments have so far shown an unequivocal beneficial
effect for treatment of COVID-19. Hydroxychloroquine in
combination with azithromycin was initially suggested to be an
effective treatment combination; however, validation trials have
been unable to confirm beneficial effects. Importantly, the
World Health Organization recently expressed concern over cardiac arrhythmias and other potentially serious effects with the hydroxychloroquine–azithromycin combination, and
several of the initial publications have now been retracted
(38–41). Twenty-seven patients in this cohort were treated with steroids, and dexamethasone has subsequently shown to
reduce mortality in hospitalized patients with COVID-19 (42).

A few patients in our series were treated with lopinavir-ritona-
vir; however, clinical trials have not shown a clinical benefit of
these antiretroviral drugs (43). Recent reports on remdesivir
as well as treatment with convalescent plasma therapy have
shown promising results, and there are case reports on suc-
cessful treatment of COVID-19 with IL-6 blockade (44–49). In
addition, there are indications that the Bruton tyrosine kinase
inhibitor acalabrutinib can reduce the excessive inflammatory
response in patients with severe COVID-19 (50).

Limitations of this study include it being a case series from
tertiary cancer centers with a selected patient population in
in which patients who were treated at local hospitals in the outpa-
tient setting were less likely to be included. Nevertheless, we esti-
rate the level of reporting to be high for patients with multiple myeloma given the potential severity of COVID-19 and the high
compliance among these patients. However, given the study
design, asymptomatic patients may be underrepresented as in
many of the published COVID-19 studies. There were missing
data for certain laboratory results for some of the patients,
primarily those who were treated as outpatients where not all were
tested for C-reactive protein, ferritin, D-dimer, or IL-6 levels.

In summary, we present data on a large case series of
COVID-19–positive patients with multiple myeloma and
related precursor diseases showing case fatality of 29% among
hospitalized patients. We comprehensively investigated the
role of other comorbidities and found that the strongest risk
factors for severe outcome were race/ethnic background
and cardiovascular comorbidities similar to those in the
general population. In this cohort, multiple myeloma disease
type, stage of treatment, and immunoglobulin levels were
not significantly associated with adverse outcome. Ongoing
larger studies with a wide range of hematologic malignan-
cies will provide additional information on important risk
factors in these patients. Nevertheless, given that patients
with multiple myeloma are at an increased risk of various
other infections due to both disease- and treatment-associated
immunosuppression (23), current recommendations by the
American Society of Hematology, the European Myeloma
Network, and the International Myeloma Society state that
high-dose melphalan chemotherapy followed by autologous
stem cell transplant should be postponed, if possible, until
the pandemic levels off (31). Going forward, until there is a
vaccine or effective treatment for COVID-19, clinical manage-
ment and treatment of patients with multiple myeloma has
to be carefully considered and adjusted to reduce the risk of
exposure and minimize immunosuppression while aiming to
achieve deep remissions in the era of COVID-19.

METHODS

This is a retrospective multiple center study including five large
academic centers in New York: MSKCC, New York University Langone
Health, Mount Sinai, Weill Cornell Medicine, and Columbia University
Medical Center.

Consecutive patients with multiple myeloma and related plasma
cell disorders and confirmed COVID-19 either in the inpatient or
outpatient setting were included in this study. Patients were
identified through automated hospital database searches using ICD-10
codes (C91.0 and D47.2) among those who tested positive for SARS-
CoV-2 during the peak of the outbreak between March 10, and April
30, 2020. In addition, all clinical faculty were requested to report
if they had patients with multiple myeloma diagnosed at outside
clinics. Patients were followed until time of event or until July 6,
2020, by which time all patients had either recovered or expired from
COVID-19. A total of 127 patients were included from the follow-
ning centers: MSKCC (n = 52), New York University Langone Health
(n = 30), Mount Sinai (n = 23) (51), Weill Cornell Medicine (n = 13),
and Columbia University Medical Center (n = 9). Patient characteris-
tics are presented in the Supplementary Table 1.

The presence of SARS-CoV-2 was determined using nasopharynx
swabs and real-time PCRs targeting viral RNA. Patients were admit-
ted if they had shortness of breath, decreased oxygen saturation,
or other clinical symptoms such as high fever, fatigue, or failure to
thrive based on the treating or admitting physicians’ assessment. We
gathered data on patient characteristics such as age, gender, race/
ethnicity as well as comorbidities including cardiovascular comor-
bidity (e.g., hypertension and diabetes). We manually extracted
data on multiple myeloma stage, ongoing treatment, and previous autologous or allogeneic stem cell transplant. Laboratory findings, for example, blood counts and inflammatory markers from testing performed at the time of COVID-19, were included. If immunoglobulin levels were not obtained at COVID-19 diagnosis, results from up to 30 days prior were used. COVID-19–related outcomes were assessed regarding the need for admission, ICU admission, invasive mechanical ventilation, and whether the patient expired from COVID-19 or other causes. We also obtained information on treatments used for COVID-19: hydroxychloroquine, azithromycin, dexamethasone, antiviral agents, IL-6 inhibitors, or convalescent plasma.

Descriptive statistics were used to characterize the patient cohort and to present information on outcomes. The primary composite endpoint for adverse outcome was defined as admission to the ICU, need for invasive mechanical ventilation, or death. The assessed risk factors were categorized into clinically relevant thresholds. Hypogammaglobulinemia was defined as IgG levels <650 mg/dL (lower limit of normal), and severe hypogammaglobulinemia was defined as IgG levels <400 mg/dL. Associations between continuous laboratory measurements (absolute neutrophil count, absolute lymphocyte count, platelet count, C-reactive protein, ferritin, D-dimer, IL-6 level) and the adverse combined endpoint were tested by the Wilcoxon rank-sum test, and associations between the combined endpoint and discrete patient characteristics (age >65 years, gender, race/ethnicity, presence of comorbidities, multiple myeloma disease stage, high-dose melphalan and autologous stem cell transplant within 12 months, hypogammaglobulinemia) were tested by Fisher exact test. Univariate logistic regression was used to estimate ORs with 95% confidence intervals (CI) for these risk factors associated with adverse outcomes. In general, the group absence of risk factor under study was used as the reference group. Separate analyses were performed for patients with multiple myeloma (N = 100) and for all patients with plasma cell disorders (N = 127). This study was approved under the MSK Myeloma Service, and informed consent was waived under the retrospective research protocol (Institutional Review Board protocol 18-143).

Disclosure of Potential Conflicts of Interest
M. Hultcrantz reports personal fees from Curio Science (consulting) and Intellisphere, LLC (consulting), and grants from the Swedish Blood Cancer Foundation and Karolinska Institute Foundations outside the submitted work. J. Richter reports personal fees from Celgene, Bristol-Myers Squibb, Janssen, Oncopptides, X4 Pharmaceuticals, Sanofi, Secura Bio, Adaptive Biotechnologies, Antengene, Karyopharm, and AstraZeneca outside the submitted work. C.A. Rosenbaum reports other from Amgen (research funding), Akcea (advisory board), and Celgene (advisory board) outside the submitted work. E.L. Smith reports personal fees from Bristol-Myers Squibb (consultant), Fate Therapeutics (consultant), and Precision Biosciences (consultant) outside the submitted work, as well as patents for CAR T cells for the treatment of multiple myeloma pending, issued, licensed, and with royalties paid from Bristol-Myers Squibb. N. Korde reports personal fees from AstraZeneca (advisory board) and other from Amgen (research funding) outside the submitted work. S. Mailankody reports other from Allogene Therapeutics (research support to institution), Juno/Bristol-Myers Squibb (research support to institution), Janssen (research support to institution), Takeda Oncology (research support to institution), Physician Education Resource [honorary for continuing medical education (CME) activity], and Plexus Education (honorary for CME activity) during the conduct of the study. U.A. Shah reports grants from Parker Institute for Cancer Immunotherapy and Celgene, and personal fees from Physician Education Resource outside the submitted work. C. Tan reports personal fees from Janssen outside the submitted work. A. Rossi reports other from Bristol-Myers Squibb (advisory board), Janssen (advisory board), and Amgen (advisory board) outside the submitted work. D. Madduri reports other from Foundation Medicine (consultant), Janssen (consultant), Legend (consultant), GlaxoSmithKline (consultant), Sanofi (consultant), Kinevant (consultant), Bristol-Myers Squibb (consultant), and Celgene (consultant) outside the submitted work. A. Chari reports grants and personal fees from Janssen (research funding, advisory board, consultant), Celgene (research funding, advisory board, consultant), Novartis Pharmaceuticals (research funding, advisory board, consultant), Amgen (research funding, advisory board, consultant), Seattle Genetics (research funding, advisory board), and Millennium/Takeda (research funding, consultant); grants from Pharmacies (research funding); and personal fees from Bristol-Myers Squibb (consulting), Karyopharm (advisory board, consultant), Sanofi Genzyme (advisory board, Oncopeptides (advisory board), Antengene (consultant), GlaxoSmithKline (advisory board), and Secura Bio (consultant/advisory board) outside the submitted work. M.J. Braunstein reports grants and personal fees from Janssen (research funding, advisory board) and personal fees from Celgene (advisory board), Takeda (advisory board), Karyopharm (advisory board), Amgen (advisory board), and AstraZeneca (advisory board) outside the submitted work. R. Reshef reports personal fees from Gilead, Atara, Magenta, Novartis, Bristol-Myers Squibb, and Pfizer outside the submitted work. F.E. Davies reports personal fees from AstraZeneca, Biotech Roche, Deciphera, Sanofi, and Ascentage (consultant) and personal fees from Bristol-Myers Squibb/Celgene and Janssen outside the submitted work. S. Jagannath reports other from Bristol-Myers Squibb (consulting), Janssen Pharmaceuticals (consulting), Karyopharm Therapeutics (consulting), Legend Biotech (consulting), Sanofi (consulting), and Takeda (consulting) outside the submitted work. S. Lentzsch reports personal fees from Caelum Biosciences (shareholder, patent holder, and scientific advisor), Sorrento, Janssen, and Celularity, and grants from Karyopharm and Sanofi outside the submitted work. O. Landgren reports grants from Amgen, Janssen, and Takeda; personal fees from Amgen (scientific talks), Janssen (scientific talks), and Bristol-Myers Squibb (scientific talks); and other from Janssen (independent data monitoring committee, IDMC), Takeda (IDMC), and Merck (IDMC) outside the submitted work. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
M. Hultcrantz: Conceptualization, data curation, formal analysis, supervision, funding acquisition, validation, investigation, visualization, methodology, writing–original draft, project administration, writing–review and editing. J. Richter: Data curation, writing–review and editing. C.A. Rosenbaum: Data curation, writing–review and editing. D. Patel: Data curation, writing–review and editing. E.L. Smith: Data curation, writing–review and editing. N. Korde: Data curation, writing–review and editing. S. Mailankody: Data curation, writing–review and editing. A.M. Lesokhin: Data curation, writing–review and editing. H. Hassoun: Data curation, writing–review and editing. C. Tan: Data curation, writing–review and editing. F. Maura: Data curation, writing–review and editing. A. Derkach: Formal analysis, validation, methodology, writing–review and editing. B. Diamond: Data curation, writing–review and editing. A. Rossi: Data curation, writing–review and editing. R.N. Pearse: Data curation, writing–review and editing. D. Madduri: Data curation, writing–review and editing. A. Chari: Data curation, writing–review and editing. R. Reshef: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Gordillo: Data curation, project administration, writing–review and editing. A. Shah: Data curation, writing–review and editing. A.M. Lesokhin: Data curation, writing–review and editing. H. Hassoun: Data curation, writing–review and editing. J. Richter: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Tan: Data curation, writing–review and editing. F. Maura: Data curation, writing–review and editing. A. Derkach: Formal analysis, validation, methodology, writing–review and editing. B. Diamond: Data curation, writing–review and editing. A. Rossi: Data curation, writing–review and editing. R.N. Pearse: Data curation, writing–review and editing. D. Madduri: Data curation, writing–review and editing. A. Chari: Data curation, writing–review and editing. R. Reshef: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Gordillo: Data curation, project administration, writing–review and editing. A. Shah: Data curation, writing–review and editing. A.M. Lesokhin: Data curation, writing–review and editing. H. Hassoun: Data curation, writing–review and editing. J. Richter: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Tan: Data curation, writing–review and editing. F. Maura: Data curation, writing–review and editing. A. Derkach: Formal analysis, validation, methodology, writing–review and editing. B. Diamond: Data curation, writing–review and editing. A. Rossi: Data curation, writing–review and editing. R.N. Pearse: Data curation, writing–review and editing. D. Madduri: Data curation, writing–review and editing. A. Chari: Data curation, writing–review and editing. R. Reshef: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Gordillo: Data curation, project administration, writing–review and editing. A. Shah: Data curation, writing–review and editing. A.M. Lesokhin: Data curation, writing–review and editing. H. Hassoun: Data curation, writing–review and editing. J. Richter: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Tan: Data curation, writing–review and editing. F. Maura: Data curation, writing–review and editing. A. Derkach: Formal analysis, validation, methodology, writing–review and editing. B. Diamond: Data curation, writing–review and editing. A. Rossi: Data curation, writing–review and editing. R.N. Pearse: Data curation, writing–review and editing. D. Madduri: Data curation, writing–review and editing. A. Chari: Data curation, writing–review and editing. R. Reshef: Data curation, writing–review and editing. M.J. Braunstein: Data curation, writing–review and editing. C. Gordillo: Data curation, project administration, writing–review and editing.
data curation, validation, investigation, writing–review and editing. S. Lentzch: Conceptualization, data curation, validation, investigation, writing–review and editing. G.J. Morgan: Conceptualization, data curation, validation, investigation, writing–review and editing.

O. Landgren: Conceptualization, resources, supervision, validation, investigation, writing–review and editing.

Acknowledgments

This work was supported by the NCI Memorial Sloan Kettering Core Grant (P30 CA008748).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 12, 2020; revised July 15, 2020; accepted July 27, 2020; published first July 30, 2020.

REFERENCES

Correction: COVID-19 Infections and Outcomes in Patients with Multiple Myeloma in New York City: A Cohort Study from Five Academic Centers

In the original version of this article (1) as it was published online on July 30, 2020, a reference to the study (2) reporting 23 patients from Mount Sinai included in this cohort has been inadvertently omitted from the Methods. Information on patients per hospitals in this study is now specified in the Supplementary Table S1. The HTML and PDF versions of this article were corrected on the date listed below, ahead of print. The authors regret this error.

REFERENCES

Published first November 4, 2020.
Blood Cancer Discov 2020;1:290
doi: 10.1158/2643-3230.BCD-20-0160
©2020 American Association for Cancer Research.
COVID-19 Infections and Clinical Outcomes in Patients with Multiple Myeloma in New York City: A Cohort Study from Five Academic Centers

Malin Hultcrantz, Joshua Richter, Cara A. Rosenbaum, et al.

Updated version
Access the most recent version of this article at:
doi: 10.1158/2643-3230.BCD-20-0102

Supplementary Material
Access the most recent supplemental material at:
http://bloodcancerdiscov.aacrjournals.org/content/suppl/2020/09/01/2643-3230.BCD-20-0102.DC1

Cited articles
This article cites 44 articles, 8 of which you can access for free at:
http://bloodcancerdiscov.aacrjournals.org/content/1/3/234.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://bloodcancerdiscov.aacrjournals.org/content/1/3/234.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://bloodcancerdiscov.aacrjournals.org/content/1/3/234.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.