RESEARCH ARTICLES

BCOR Binding to MLL-AF9 Is Essential for Leukemia via Altered EYA1, SIX, and MYC Activity ... 162

Combinatorial ETS1-Dependent Control of Oncogenic NOTCH1 Enhancers in T-Cell Leukemia ... 178

Précis: Ets1 coregulates Notch transcriptional program in T cells and is essential for Notch-driven T-ALL but not intestinal homeostasis, suggesting its targeting in T-ALL as a less toxic alternative to Notch inhibition.

Apolipoprotein C2 - CD36 Promotes Leukemia Growth and Presents a Targetable Axis in Acute Myeloid Leukemia ... 198

T. Zhang, J. Yang, V.P. Vaikari, J.S. Beckford, S. Wu, M. Akhtari, and H. Alachkar

Précis: Elevated APOC2 expression correlates with MLL-rearrangement and worse prognosis in AML. APOC2 promotes AML growth through CD36-dependent lipid metabolism, and blocking APOC2 or CD36 slows down AML progression in mice.
Multiple myeloma often relapses following CAR T cell therapy. The relapsing myeloma cells often lose or decrease the expression of the CAR-targeted antigen, suggesting antigen escape prevention may increase durability of the remission. In this issue, Eric Smith, Renier Brentjens and colleagues present approaches for simultaneously targeting BCMA and GPRC5D myeloma antigens by a single CART infusion. BCMA/GPRC5D dual-specific CAR T cells eliminate myeloma cells positive for both antigens, and protect mice from rechallenge with BCMA-negative myeloma. Among three orthogonal approaches, the best CAR T performance is achieved when BCMA and GPRC5D CARs are encoded by a bicistronic vector. The results pave the way to testing whether the dual-antigen CAR therapy would prevent antigen escape and extend the remission in patients with BCMA+ GPRC5D+ myeloma in clinical trials. For details, please see the article by Fernández de Larrea et al. on page 146 and the accompanying commentary by Simon and Riddell on page 130.