IN THIS ISSUE

Highlighted research articles

127

VIEWS

In The Spotlight

Dual Targeting with CAR T Cells to Limit Antigen Escape in Multiple Myeloma

S. Simon and S.R. Riddell

See article, p. 146

REVIEW

Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia

C. Jamieson, G. Martinelli, C. Papayannidis, and J.E. Cortes

134

RESEARCH BRIEFS

Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma


Précis: CAR T cells targeting two multiple myeloma (MM) antigens are generated by orthogonal approaches, of which bicistronic vector shows superior activity, conferring long-term resistance against MM in a mouse xenograft model of antigen escape.

See commentary, p. 130

Gene Expression Profiling of Mediastinal Gray Zone Lymphoma and Its Relationship to Primary Mediastinal B-cell Lymphoma and Classical Hodgkin Lymphoma

S. Pittaluga, A. Nicolae, G.W. Wright, C. Melani, M. Roschewski, S. Steinberg, D. Huang, L.M. Staudt, E.S. Jaffe, and W.H. Wilson

155

RESEARCH ARTICLES

BCOR Binding to MLL-AF9 Is Essential for Leukemia via Altered EYA1, SIX, and MYC Activity


Précis: Structure-function characterization of AF9 complexes with BCOR and CBX8 identifies BCOR-Eya1-Myc axis in MLL-AF9-driven leukemogenesis

Combinatorial ETS1-Dependent Control of Oncogenic NOTCH1 Enhancers in T-cell Leukemia


Précis: Ets1 coregulates Notch transcriptional program in T cells and is essential for Notch-driven T-ALL but not intestinal homeostasis, suggesting its targeting in T-ALL as a less toxic alternative to Notch inhibition.

Apolipoprotein C2 - CD36 Promotes Leukemia Growth and Presents a Targetable Axis in Acute Myeloid Leukemia

T. Zhang, J. Yang, V.P. Vaikari, J.S. Beckford, S. Wu, M. Akhtar, and H. Alachkar

Précis: Elevated APOC2 expression correlates with MLL-rearrangement and worse prognosis in AML. APOC2 promotes AML growth through CD36-dependent lipid metabolism, and blocking APOC2 or CD36 slows down AML progression in mice.
Multiple myeloma often relapses following CAR T cell therapy. The relapsing myeloma cells often lose or decrease the expression of the CAR-targeted antigen, suggesting antigen escape prevention may increase durability of the remission. In this issue, Eric Smith, Renier Brentjens and colleagues present approaches for simultaneously targeting BCMA and GPRC5D myeloma antigens by a single CART infusion. BCMA/GPRC5D dual-specific CAR T cells eliminate myeloma cells positive for both antigens, and protect mice from rechallenge with BCMA-negative myeloma. Among three orthogonal approaches, the best CAR T performance is achieved when BCMA and GPRC5D CARs are encoded by a bicistronic vector. The results pave the way to testing whether the dual-antigen CAR therapy would prevent antigen escape and extend the remission in patients with BCMA+ GPRC5D+ myeloma in clinical trials. For details, please see the article by Fernández de Larrea et al. on page 146 and the accompanying commentary by Simon and Riddell on page 130.